- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Pauly, Arno (3)
-
Davis, Caleb (1)
-
Dzhafarov, Damir D. (1)
-
Goh, Jun Le (1)
-
Hirschfeldt, Denis R. (1)
-
Hirschfeldt, Denis R. (1)
-
Hirst, Jeffry (1)
-
Lempp, Steffen (1)
-
Miller, Joseph (1)
-
Pardo, Jake (1)
-
Patey, Ludovic (1)
-
Soskova, Mariya (1)
-
Valenti, Manlio (1)
-
Yokoyama, Keita (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we study the existence of minimal covers and strong minimal covers in the Weihrauch degrees. We characterize when a problem is a minimal cover or strong minimal cover of a problem . We show that strong minimal covers only exist in the cone below and that the Weihrauch lattice above is dense. From this, we conclude that the degree of is first-order definable in the Weihrauch degrees and that the first-order theory of the Weihrauch degrees is computably isomorphic to third-order arithmetic.more » « less
-
Dzhafarov, Damir D.; Goh, Jun Le; Hirschfeldt, Denis R.; Patey, Ludovic; Pauly, Arno (, Computability)
-
Davis, Caleb; Hirschfeldt, Denis R.; Hirst, Jeffry; Pardo, Jake; Pauly, Arno; Yokoyama, Keita (, Computability)
An official website of the United States government
